Spontaneous Synaptic Activation of Muscarinic Receptors by Striatal Cholinergic Neuron Firing

نویسندگان

  • Aphroditi A. Mamaligas
  • Christopher P. Ford
چکیده

Cholinergic interneurons (CHIs) play a major role in motor and learning functions of the striatum. As acetylcholine does not directly evoke postsynaptic events at most striatal synapses, it remains unclear how postsynaptic cholinergic receptors encode the firing patterns of CHIs in the striatum. To examine the dynamics of acetylcholine release, we used optogenetics and paired recordings from CHIs and medium spiny neurons (MSNs) virally overexpressing G-protein-activated inwardly rectifying potassium (GIRK) channels. Due to the efficient coupling between endogenous muscarinic receptors and GIRK channels, we found that firing of individual CHIs resulted in monosynaptic spontaneous inhibitory post-synaptic currents (IPSCs) in MSNs. Paired CHI-MSN recordings revealed that the high probability of acetylcholine release at these synapses allowed muscarinic receptors to faithfully encode physiological activity patterns from individual CHIs without failure. These results indicate that muscarinic receptors in striatal output neurons reliably decode CHI firing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors

Subiculum, the primary efferent pathway of hippocampus, participates in memory for spatial tasks, relapse to drug abuse, and temporal lobe seizures. Subicular pyramidal neurons exhibit low-threshold burst firing driven by a spike afterdepolarization. Here we report that burst firing can be regulated by stimulation of afferent projections to subiculum. Unlike synaptic plasticity, burst plasticit...

متن کامل

Modulation of GABAergic transmission by muscarinic receptors in the entorhinal cortex of juvenile rats.

Whereas the entorhinal cortex (EC) receives profuse cholinergic innervations from the basal forebrain and activation of cholinergic receptors has been shown to modulate the activities of the principal neurons and promote the intrinsic oscillations in the EC, the effects of cholinergic receptor activation on GABAergic transmission in this brain region have not been determined. We examined the ef...

متن کامل

Muscarinic receptor activation enables persistent firing in pyramidal neurons from superficial layers of dorsal perirhinal cortex.

Persistent-firing neurons in the entorhinal cortex (EC) and the lateral nucleus of the amygdala (LA) continue to discharge long after the termination of the original, spike-initiating current. An emerging theory proposes that endogenous persistent firing helps support a transient memory system. This study demonstrated that persistent-firing neurons are also prevalent in rat perirhinal cortex (P...

متن کامل

Regulation of rat mesencephalic GABAergic neurones through muscarinic receptors.

Central dopamine neurones are involved in regulating cognitive and motor processes. Most of these neurones are located in the ventral mesencephalon where they receive abundant intrinsic and extrinsic GABAergic input. Cholinergic neurones, originating from mesopontine nuclei, project profusely in the mesencephalon where they preferentially synapse onto local GABAergic neurones. The physiological...

متن کامل

KV7 Channels Regulate Firing during Synaptic Integration in GABAergic Striatal Neurons

Striatal projection neurons (SPNs) process motor and cognitive information. Their activity is affected by Parkinson's disease, in which dopamine concentration is decreased and acetylcholine concentration is increased. Acetylcholine activates muscarinic receptors in SPNs. Its main source is the cholinergic interneuron that responds with a briefer latency than SPNs during a cortical command. Ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 91  شماره 

صفحات  -

تاریخ انتشار 2016